Some discrete-time SI, SIR, and SIS epidemic models.

نویسنده

  • L J Allen
چکیده

Discrete-time models, or difference equations, of some well-known SI, SIR, and SIS epidemic models are considered. The discrete-time SI and SIR models give rise to systems of nonlinear difference equations that are similar in behavior to their continuous analogues under the natural restriction that solutions to the discrete-time models be positive. It is important that the entire system be considered since the difference equation for infectives I in an SI model has a logistic form which can exhibit period-doubling and chaos for certain parameter values. Under the restriction that S and I be positive, these parameter values are excluded. In the case of a discrete SIS model, positivity of solutions is not enough to guarantee asymptotic convergence to an equilibrium value (as in the case of the continuous model). The positive feedback from the infective class to the susceptible class allows for more diverse behavior in the discrete model. Period-doubling and chaotic behavior is possible for some parameter values. In addition, if births and deaths are included in the SI and SIR models (positive feedback due to births) the discrete models exhibit periodicity and chaos for some parameter values. Single-population and multi-population, discrete-time epidemic models are analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENTROPY FOR DTMC SIS EPIDEMIC MODEL

In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.

متن کامل

An Introduction to Stochastic Epidemic Models

A brief introduction to the formulation of various types of stochastic epidemic models is presented based on the well-known deterministic SIS and SIR epidemic models. Three different types of stochastic model formulations are discussed: discrete time Markov chain, continuous time Markov chain and stochastic differential equations. Properties unique to the stochastic models are presented: probab...

متن کامل

Optimal Design of Experimental Epidemics

We consider the optimal design of experimental epidemics modelled as density dependent Markov processes. We focus on finding (i) the optimal times at which to collect data about the state of the system for a small number of discrete observations, (ii) the optimal numbers of susceptible and infective individuals to begin an experiment with, and (iii) the optimal number of replicate epidemics to ...

متن کامل

Using Data Assimilation Technique and Epidemic Model to Predict TB Epidemic

People of India are very susceptible to many infectious diseases like malaria, TB, HIV etc. There are many epidemic models that are used to predict new cases of disease. Some of the popular epidemic models are SI (Susceptible-Infectious), SIR (Susceptible-Infectious-Recovered), SIRS, SIS etc. In this research quarterly data of TB disease in Uttarakhand (India) for 7 years is collected and on th...

متن کامل

Coalescent inference for infectious disease: meta-analysis of hepatitis C

Genetic analysis of pathogen genomes is a powerful approach to investigating the population dynamics and epidemic history of infectious diseases. However, the theoretical underpinnings of the most widely used, coalescent methods have been questioned, casting doubt on their interpretation. The aim of this study is to develop robust population genetic inference for compartmental models in epidemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 124 1  شماره 

صفحات  -

تاریخ انتشار 1994